Multiple forces can be applied to an object (for AP Physics C)

First principles

A **force** is a push or a pull exerted on an object by another object.

$$[F] = N$$

Newton I

The sum of all external forces acting on a material object equals zero only for all times when the object's velocity is staying constant.

$$\sum \vec{\mathbf{F}} = \vec{\mathbf{0}} \Leftrightarrow \text{constant } \vec{\mathbf{v}}$$

Newton II

The velocity of a material object changes at a rate proportional to the sum of all external forces and inversely proportional to the object's inertial mass.

$$[m_{ extsf{I}}] = ext{kg}$$
 $ec{\mathbf{a}} := rac{ ext{d}ec{\mathbf{v}}}{ ext{d}t} = rac{\sum ec{\mathbf{F}}}{m_{ ext{I}}}$

Newton III

Each force has a partner force of equal magnitude and opposite direction, with the roles of the object doing the pushing and the object being pushed exchanged.

There exists
$$\vec{\mathbf{F}}_{_,2\rightarrow1}$$
 \Rightarrow there also exists $\vec{\mathbf{F}}_{_,1\rightarrow2} = -\vec{\mathbf{F}}_{_,2\rightarrow1}$

Common forces

Origin	Force	Label	Magnitude formula	Direction relative to object being acted on
Peripheral proximity to Earth	Gravitational (Newtonian)	$F_{ m G}$	$m_{\mathbb{G}}g$	From object toward Earth
Proximity to massive object			$rac{Gm_{\mathbb{G},1}m_{\mathbb{G},2}}{r^2}$	From object to other mass
Contact with stretched string	Tension	T	No memorized formula	From object back into string
Contact with surface	Normal	N	No memorized formula	⊥ to contact plane, pushes back into object
	Static friction	fs	Less than greatest sustainable (for a given N) $f_{\rm S} < \mu_{\rm S} N$	∥ to contact plane, opposes interfacial slippage
			Greatest sustainable ("") $f_{\rm S} = \mu_{\rm S} N$ Unsustainable ("")	
			$f_{\rm S} > \mu_{\rm S} N$	
	Kinetic friction	$f_{\rm K}$	$\mu_{\mathrm{K}}N$	
Contact with fluid medium	Viscous drag (laminar)	D	<i>b</i> <i>v</i>	Opposes motion of object through fluid
	Ballistic drag		$\frac{1}{2}C\rho Av^2$	
Contact with spring	Spring (Hookean)	$F_{ m SPR}$	$k \Delta x $	Opposes spring deformation
Proximity to other charge	Electric (Coulomb)	$F_{ m E}$	$\frac{k q_1 q_2 }{r^2}$	Opposites attract; like repel
			q E	$\vec{F}_E \parallel \vec{E}$ for (+) test charge
Proximity to			$ q v \sin\theta B$	
other moving charge(s)	Magnetic (Lorentz)	$F_{ m B}$	$I\ell \sin\theta B$	RHR

There is **no such force as "the net" force**. The phrase "the net force" refers to the sum of all *actual* forces acting on a system.

Problem-solving algorithm

- 1. Carefully **read** problem three times.
- 2. **Sketch system(s)** of interest enclosed in dashed bubble(s) and sketch relevant aspects of the environment.
- 3. List any **givens** not already sketched. List requested **unknowns**.
- 4. For each system of interest, draw a dot diagram with signed Cartesian axes.
 - a. Include all actual forces. Ask the following questions and obtain, as needed, *labels* from the table of common forces.
 - i. Is the **Earth nearby?**
 - ii. Is anything touching the system?
 - iii. Other than the Earth, are any massive objects nearby?
 - iv. Any charges nearby?
 - v. Any moving charges nearby?
 - b. Do not include extraneous forces. All forces on a dot diagram must act on the object represented by the dot.
 - c. Populate a spreadsheet of force components (e.g. F_x and F_y)
 - d. If dot diagrams for multiple systems are drawn, recognize each interaction force pair (equal magnitudes).
 - e. **Sum up forces** in each column of spreadsheet $(\sum F_x = ma_x \text{ etc.})$
- Solve resulting system of equations for unknowns (or determine unknowns directly in cells of spreadsheet).
 Sometimes, substituting magnitude formulas might be necessary.
- 6. Remember: **Base your reasoning on Newtonian principles**, not on "what it feels should be the case."